Key Takeaways
- Results from in vitro assays demonstrate VRDN-001 and VRDN-003 provide indistinguishable and near-complete inhibition of IGF-1 binding and IGF-1R signaling.
- Prior studies with VRDN-001 have shown robust increases in IGF-1 levels in healthy volunteers and patients with TED as well as rapid, marked improvements in TED symptoms in a small cohort of TED patients (ARVO oral #5432).
- Given that VRDN-001 and VRDN-003 antagonist properties are the same, VRDN-003 should achieve similar in vivo pharmacodynamics and efficacy.

Introduction
Clinical and preclinical studies have confirmed IGF-1R antagonism can reduce the inflammation and proptosis that occur in TED. VRDN-001, a full antagonist antibody to IGF-1R with subnanomolar affinity, is under development for the treatment of TED. VRDN-003 is a next-generation, half-life extended version of VRDN-001 designed to optimize subcutaneous administration via a self-administered pen. Given that VRDN-003 is identical to VRDN-001 except for the half-life extension modification, we assessed whether they have the same in vitro antagonist characteristics.

Methods
- Antibody binding to IGF-1R: Antibody binding to endogenously expressed cell surface IGF-1R was characterized in human ocular choroid fibroblasts (HOCFs).
- Inhibition of ligand binding: Dose responses of inhibition of biotinylated IGF-1 binding to IGF-1R-expressing FreeStyle™ 293-F cells were assessed by flow cytometry.
- Antagonist properties: Dose responses of inhibition of IGF-1R and AKT phosphorylation (endpoints of IGF-1-mediated signaling) were assessed in HOCFs.
- Representative experiments are shown for each endpoint.

Antibody Binding to IGF-1R

Antibody Antagonism of IGF-1R Signaling

Antibody Inhibition of Ligand Binding to IGF-1R

Therapeutic Implications
- The similar antagonist characteristics for VRDN-003 vs VRDN-001 shown here suggest VRDN-003 should show similar clinical effect to that observed in the VRDN-001 phase 2 proof-of-concept study in patients with active TED (ARVO oral #5432).
- VRDN-003 pharmacodynamic parameters observed in cynomolgus monkeys demonstrated VRDN-003 half-life was twice as long as VRDN-001 half-life (ARVO poster #4043), reinforcing its potential for subcutaneous self-administration.

References:

Disclosures: This study was sponsored by Viridian Therapeutics. VRDN-001 and VRDN-003 are investigational treatments not approved for any use in any country. Formatting and editorial assistance were provided by Nathalie Smith and funded by Viridian Therapeutics. All authors met the ICMJE authorship criteria and had full access to relevant data. All authors are employees of Viridian Therapeutics. The authors would like to thank the study investigators, research teams, and the study participants who make this research possible.

Contact Information: info@viridiantherapeutics.com

Figure Images
- Binding to IGF-1R-expressing HOCF cells
- Inhibition of IGF-1R phosphorylation (proximal signaling)
- Inhibition of AKT phosphorylation (distal signaling)