VRDN-002, a Next-Generation Half-life Extended Antagonist Antibody to IGF-1 Receptor for Thyroid Eye Disease (TED): Safety and Pharmacokinetic/Pharmacodynamic (PK/PD) Results in Healthy Volunteers

KEY TAKEAWAYS
In healthy volunteers (HVs) treated with a single infusion of VRDN-002 at 3, 10, or 20 mg/kg:
- All doses were generally well tolerated.
- VRDN-002 elicited rapid and sustained increases in IGF-1 serum levels, a biomarker for target engagement and IGF-1R inhibition.
- VRDN-002 displayed a half-life of up to 43 days and elicited maximal target engagement as early as 15 days after dosing, with serum IGF-1 levels reaching 2-3-fold above baseline.

INTRODUCTION
- VRDN-002 is a next-generation, half-life extended antagonist antibody to IGF-1R under development for the treatment of TED.
- TED is a debilitating autoimmune disorder associated with orbital inflammation, proptosis, diplopia, and soft tissue changes.
- Clinical and preclinical evidence indicates a central role for IGF-1R inhibition in reducing inflammation and proptosis in TED.
- We present safety, PK/PD, and modeling results from our phase 1 clinical trial evaluating VRDN-002 dosed at 3, 10, or 20 mg/kg.

STUDY DESIGN AND PARTICIPANTS
- 12 adult HVs were randomized to receive a single IV infusion of placebo or VRDN-002; mean age was 55 years (range: 29 to 72); 7 were male and 5 female.
- One HV (20 mg/kg) was withdrawn because of their protocol noncompliance and was followed for safety through Day 29.
- Adverse events (AEs) and PK and PD parameters (IGF-1 serum levels) were assessed at regular intervals through 85 days.

SAFETY RESULTS
- 4 HVs had 4 AEs, all transient and mild in severity.
- There were no withdrawals due to AEs.
- There were no serious AEs or cases of hyperglycemia, muscle spasms, infusion reactions, or hearing impairment.

PHARMACOKINETIC RESULTS
- VRDN-002 has extended half-life up to 43 days in HVs:
 - 3 mg/kg
 - 10 mg/kg
 - 20 mg/kg

- Compared with standard Igg antibodies including VRDN-001 (10-11 days), VRDN-002 half-life is extended ~4x.
- Clearance was displayed at 3 mg/kg, consistent with saturable elimination kinetics associated with target-mediated drug disposition.

PHARMACODYNAMIC RESULTS
- VRDN-002 increased IGF-1 serum levels in HVs:
 - Placebo
 - 3 mg/kg
 - 10 mg/kg
 - 20 mg/kg

- Mean IGF-1 serum levels across the VRDN-002 groups increased from 137–148 ng/mL at baseline to 350–429 ng/mL after 15 days following 1 infusion.
- IGF-1 serum levels started to increase within a day and reached 2–3-fold above baseline by Day 15 for all VRDN-002 doses; they remained elevated through Day 85 for the 10 mg/kg and 20 mg/kg groups.

PK MODELING FOR POTENTIAL SC ADMINISTRATION
- A 2-compartment model with linear and Michaelis-Menten clearance was employed to estimate Cmax and exposure for a range of dosing regimens.
- VRDN-002 yields exposures enabling SC administration when dosed at 300 mg following a 600-mg loading dose at Q2W or Q4W intervals.

THERAPEUTIC IMPLICATIONS
- The robust PD response with a favorable safety profile suggests VRDN-002 could be an effective anti-IGF-1 antibody for the treatment of TED.
- VRDN-002’s half-life extension (up to 43 days) could enable therapeutic concentrations to be achieved with low-volume SC injection via self-administered pen, potentially decreasing the treatment burden for patients with TED.

Disclosures: This study was sponsored by Viridian Therapeutics. VRDN-002 is an investigational therapy not approved in any country. Formatting and editorial assistance was provided by Kate Kim and funded by Viridian Therapeutics. All authors meet the ICME authorship criteria and had full access to relevant data. KE, AS, BD, BE, and VB are employees of Viridian Therapeutics. PW has consulted for, conducted studies funded by, or received honoraria for services provided to Viridian Therapeutics. The authors would like to thank the study investigators, research teams, and study participants who make this research possible.