Next Generation miR-29 Mimics as a Therapy for Pulmonary Fibrosis

Rusty L. Montgomery, Ph.D.
Director, Research
Cautionary Note Regarding Forward-Looking Statements

This presentation contains forward-looking statements relating to Miragen Therapeutics, Inc., including statements about our plans to obtain funding, develop and commercialize our therapeutic candidates, our planned clinical trials, the timing of and our ability to obtain and maintain regulatory approvals for our therapeutic candidates, the clinical utility of our therapeutic candidates and our intellectual property position. You can identify forward-looking statements by the use of forward-looking terminology including “believes,” “expects,” “may,” “will,” “should,” “seeks,” “intends,” “plans,” “pro forma,” “estimates,” or “anticipates” or the negative of these words and phrases or other variations of these words and phrases or comparable terminology. All statements other than statements of historical fact are statements that could be deemed forward-looking statements. These statements involve substantial known and unknown risks, uncertainties and other factors that may cause our actual results, levels of activity, performance or achievements to be materially different from the information expressed or implied by these forward-looking statements. These forward-looking statements should not be relied upon as predictions of future events as we cannot assure you that the events or circumstances reflected in these statements will be achieved or will occur. The forward-looking statements in this presentation represent our views as of the date of this presentation. We anticipate that subsequent events and developments will cause our views to change. However, while we may elect to update these forward-looking statements at some point in the future, we have no current intention of doing so except to the extent required by applicable law. You should, therefore, not rely on these forward-looking statements as representing our views as of any date subsequent to the date of this presentation.

This presentation also contains estimates and other statistical data made by independent parties and by us relating to market size and other data about our industry. This data involves a number of assumptions and limitations, and you are cautioned not to give undue weight to such estimates. In addition, projections, assumptions and estimates of our future performance and the future performance of the markets in which we operate are necessarily subject to a high degree of uncertainty and risk.
microRNA Therapeutics Regulate Systems Biology to Modify Disease

- microRNA-targeted therapy is focused on disease modification by restoring homeostasis to dysregulated processes
- microRNAs regulate complex biological systems
- microRNA-targeted therapies are intrinsically focused on disease-relevant pathways
- microRNA therapeutics particularly suited for complex, multigenic disorders
miR-29 is an Anti-Fibrotic miRNA

- Reduced Expression of miR-29 has been Implicated in the Development and Progression of a Wide Range of Fibrosis Indications

- miR-29 inhibits TGF-β activity, EMT, fibroblast-to-myofibroblast transition and ECM synthesis
- miR-29 inhibits every step of the collagen fibrillogenesis pathway

![Diagram showing various fibrosis indications and miR-29's role](image)

- Ocular fibrosis
- Pulmonary fibrosis
- Cardiac fibrosis
- Liver fibrosis
- Renal fibrosis
- Inflammatory bowel disease
- Osteoarthritis
- Dupuytren's contractures
- Cutaneous fibrosis

miRagen preclinical and/or clinical data + literature support

miRagen literature support
miR-29 Pathways and Systems Control

Growth factors
- TGF-β2, TGF-β3, EGF, IGF2, IGFBP5, PDGFA, PDGFC

Collagen transcription/translation
- COL1A1, 1A2, 3A1, 5A1, 5A2, 5A3, 6A4, 6A5, 6A6, 8A1, 8A2, 9A1, 11A1, 12A1, 14A1, 22A1, 28A1

Post-translational modification & triple helix formation
- HSP47, P4HA2, P4HA3, PLOD2

N- and C-terminal cleavage & secretion
- PCOLCE2

Fibril cross-linking
- LOXL2

Mature collagen fibrils

TGF-β + Diseased ECM

Inflammation

miR-29

in vivo Validated Targets
miR-29 Pathways and Systems Control

MRG-201 (promiR-29)

Growth factors
- TGF-β2, TGF-β3, EGF, IGF2, IGFBP5, PDGFA, PDGFC

Collagen transcription/translation
- COL1A1, 1A2, 3A1, 5A1, 5A2, 5A3, 6A4, 6A5, 6A6, 8A1, 8A2, 9A1, 11A1, 12A1, 14A1, 22A1, 28A1

Post-translational modification & triple helix formation
- HSP47, P4HA2, P4HA3, PLOD2

N- and C-terminal cleavage & secretion
- PCOLCE2

Fibril cross-linking
- LOXL2

Mature collagen fibrils

In vivo Validated Targets
A miR-29 Positive Feedback Loop in Fibrosis
Therapeutic Hypothesis

MRG-201 restores homeostasis by modulating the positive feedback loops that maintain the fibrotic phenotype
MRG-201 (miR-29 mimic)

Pathological Fibrosis & Tissue Repair

Skin Lung Liver Eye
miR-29 as a Therapeutic in Cutaneous Fibrosis

Preclinical models

mPoC Human Volunteer Wound Repair

Drug Placebo

Safety, PK, Target Engagement (PD)

Keloids

Hypertrophic Scars

Cutaneous Scleroderma

miRagen
Clinical Trial MRG201-30-001

Incision → Biopsy → Biopsy

Day 1 → Day 9 → Day 16

miR-29
qPCR
Nanostring

RNA

Normal wound healing consists of three overlapping phases:
- Inflammation (4 – 6 days)
- Proliferation (4 – 24 days)
- Remodeling (21 days – 2 years)
MRG-201 Mechanistic Proof-of-Concept in Human Incised Skin

- Evidence of PD activity (mPoC) after single administration of MRG-201
- Validation of preclinical PD biomarkers in human incised skin

![Log2 Fold Change Graph]

- Col1a1
- Col1a3
- Col3a1
- Col5a2
- Fstl1
- Gimap7
- Mmp2
- Tgfb3
- Sdc4

miRagen

Incision vs. unwounded skin

MRG-201 vs saline
Day 5
SINGLE DOSE
MRG-201 Treatment Significantly Blunts Fibroplasia in Human Incised Skin

![Graph showing the effect of MRG-201 treatment on fibroplasia depth, width, and area compared to saline. The graph indicates a significant blunting effect with a p-value of 0.0086.](image)
miR-29 as a Therapeutic in Cutaneous Fibrosis

Preclinical models

mPoC Human Volunteer Wound Repair

Safety, PK, Target Engagement (PD)

Keloids

Hypertrophic Scars

Cutaneous Scleroderma

miRagen
miR-29 Replacement in Pulmonary Fibrosis
miR-29 is Markedly Reduced in Lungs of IPF Patients
miR-29b and MMP7 in PBMCs Correlate with Survival in IPF

- De-identified PBMC samples from IPF patients in the “Pittsburgh cohort”
- All analyses done in the statistical software R
- “survMisc” was used to determine the optimal cut point for splitting cohort into low- and high-risk group, then plotted as Kaplan-Meier curves
MRG-201 Pharmacodynamic Biomarkers Translate to Multiple Fibrotic Indications

Table of Expression Changes

<table>
<thead>
<tr>
<th></th>
<th>MRG-201 antimiR-29</th>
<th>Day 9</th>
<th>Day 16</th>
<th>SSc skin vs. normal tissue</th>
<th>SSc lung vs. normal tissue</th>
<th>IPF lung vs. normal tissue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse skin vs. vehicle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human skin incision vs. unwounded</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **TGFβ2**
- **Nedd4l**
- **Prickle1**
- **Faim2**
- **COL5A3**
- **Gimap7**
- **Cacna1g**
- **Colec11**
- **ELN**
- **Mfap2**
- **COL5A2**
- **COL1A1**
- **COL3A1**
- **COL11A1**
- **TGFβ3**
- **Fstl1**
- **COL1A2**
- **Cyt1**
- **MMP2**
- **Sdc4**
- **Sdc27**
- **Itgα3**
- **Numb**
- **Lbr**
miR-29 Mimic Represses Collagen Expression in Human IPF Fibroblasts and Epithelial cells *in vitro*
Optimizing miR-29 Replacement for Systemic Delivery to Lung

- The clinical miR-29 asset demonstrates anti-fibrotic activity in skin following local administration

- This asset is not amenable to systemic administration

- miRagen has developed additional miR-29 candidates that demonstrate systemic bioavailability delivery to lung
 - Medicinal chemistry optimization for enhanced stability
 - Targeting conjugates for delivery to tissues/cells of interest
Approach to Develop Next-Gen Mimics for Systemic Administration and Targeted Delivery

In vitro Screening of Extensively Modified Mimics
- Increase Nuclease Stability for Systemic Delivery
- Improve or Maintain potency
 - Measure of RISC loading

Targeting conjugates
- Tissue/indication specific receptor targeting ligands
- Lipophilic conjugates for improved uptake
- Evaluated *in vivo* and in specific cell type *in vitro*
Next-Generation Stabilized, Conjugated miR-29 Mimic Retains Activity in Normal Human Lung Fibroblasts (NHLFs) on Direct and Downstream Targets
Next-Generation Stabilized, Conjugated miR-29 Mimic Retains Activity in NHLFs Across a TGFβ-Induced Fibrotic Signature
Stabilized, Conjugated miR-29 Mimics Block Fibrosis in Human Precision-Cut Lung Slices

Graphical Abstract

- **Y-axis:** Collagen Content by Histology (au)
- **X-axis:** Conditions
 - CC 0h, CC 120h
 - FC 0h, FC 120h
 - C1 (1µM), C1 (5µM), C1 120h
 - C2 (1µM), C2 (5µM), C2 120h

- **Legend:**
 - **CC** = Control
 - **FC** = Fibrotic Cocktail
 - **C1** = Compound 1
 - **C2** = Compound 2

- **Statistical Significance:**
 - ***p < 0.001
 - ns = Not significant

- **Note:**
 - n = 3 (60 FOV each)
Outline of Bleomycin Studies

miR-29 mimic (10 mg/kg I.V.)

<table>
<thead>
<tr>
<th>0</th>
<th>3</th>
<th>7</th>
<th>10</th>
<th>13</th>
<th>14</th>
<th>17</th>
<th>20</th>
<th>21</th>
<th>day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bleo</td>
<td>Takedown</td>
<td>Takedown</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

↓ Prophylactic dosing paradigm ↓ Therapeutic dosing paradigm
Stabilized, Conjugated miR-29 Replacement Significantly Blocks Pulmonary Fibrosis in Bleomycin-Treated Mice

![Graph showing Total Collagen Quantification](image)

- **Saline/Saline**
- **Bleomycin/Saline**
- **Bleomycin/miR-29 mimic**

- **Collagen stained blue**
- **Normal alveoli**

Bleomycin/Saline

Bleomycin/miR-29 mimic

$p<0.05$
Stabilized, Conjugated miR-29 Replacement Down-Regulates Multiple Pro-Fibrotic Genes in Bleomycin-Treated Lungs

Gene expression of Pro-Fibrotic Markers Compared to Bleo/Saline Controls

Log2 Fold Change (Normalized to Time-matched Vehicle)

-1.0

-0.5

0.0

0.5

1.0

Bleomycin/Saline

Bleomycin/miR-29 mimic

Tgfb2

Col4a5

Igf1

Col3a1

Col1a2

Acta2

Col2a1

Col4a1

Col4a2

Col1a1

Ctgf

Eln

Col5a2

Genes L to R
Stabilized, Conjugated miR-29 Replacement Reduces BALF IGF-1 and Serum TIMP1 in Bleomycin-Treated Mice
Subcutaneous Delivery of Stabilized, Conjugated miR-29 Replacement Shows Activity on Similar Gene-Set

Gene Expression of Pro-Fibrotic Markers Compared to Bleo/Saline

![Gene Expression Chart]

Thbs2, Ccl2, Col3a1, Plau, Col4a1, Col5a2, Plat, Igf1, Col1a1, Eln, Tgfb2, Col2a1, Cdh1, Tgfb3, Mfap2, Smad3, Ccr2, Egf, Ctgf, Acta2, Itgb6, Wnt11
Summary of Preclinical Data for miR-29 Replacement in IPF

- miR-29 is reduced in lungs of IPF patients and circulating miR-29 correlates with survival
- Next-generation stabilized and targeted miR-29 mimics retain activity and show anti-fibrotic activity in NHLFs and human precision cut lung slices
- Stabilized, conjugated miR-29 mimics block fibrosis in bleomycin-induced pulmonary fibrosis with increased potency compared to first generation miR-29 mimics
- Biomarkers identified in BALF and Serum for miR-29 mimic activity
- Stabilized, conjugated miR-29 mimics demonstrate activity by both intravenous and subcutaneous routes of administration
miR-29 Replacement in Hepatic Fibrosis
Hepatic Fibrosis Opportunities

- Myriad hepatic disorders and drugs result in hepatic fibrosis
 - Autoimmune hepatitis
 - Specific storage diseases and inborn errors of metabolism
 - Nonalcoholic steatohepatitis (NASH)
 - Primary biliary cholangitis (PBC)
 - Primary sclerosing cholangitis (PSC)
 - Disorders affecting hepatic blood flow
 - Mechanical obstruction
 - Drugs (Alcohol, Chlorpromazine, Methotrexate, Tolbutamide)

- Current therapies primarily rely on targeting hepatic inflammation
- Recent compounds in development have targeted single agents within the fibrotic pathway
- miR-29 is down-regulated in patients with hepatic fibrosis and miR-29 replacement has demonstrated anti-fibrotic effects in rodent models of fibrosis
miR-29 in Liver Fibrosis

- miR-29 is down-regulated in hepatic fibrosis in humans and rodent models
- Circulating miR-29 is inversely correlated with liver fibrosis in humans
- Hepatocyte-specific miR-29 knockout mice have exaggerated fibrosis when challenged

BDL: Bile Duct Ligation
Stabilized, Conjugated miR-29 Replacement Significantly Blunts Hepatic Fibrosis in CCl₄-Treated Mice
Stabilized, Conjugated miR-29 Replacement Down-Regulates Multiple Pro-Fibrotic Genes in CCl₄-Treated Livers

Gene expression of Pro-Fibrotic Markers Compared to CCl₄/Saline Controls

- Fstl1
- Col5a1
- Fbn1
- Col3a1
- Col1a2
- Col1a1
- Col4a1
- Plat
- Plau
- Col4a2

Log 2 Fold Change

CCl₄/Saline CCl₄/miR-29 mimic
Internal Organ Fibrosis – Anticipated Path to IND

In vivo Models
- Bleomycin-Induced Pulmonary Fibrosis
- CCl₄-Induced Liver Fibrosis

Primary cell studies
- Phenotype and Molecular

Ex vivo Tissue Model
- Phenotype and Molecular

Non-GLP Toxicology/DRF/irritancy Rodent and NHP

IND-Enabling Toxicology, Clin Pharm

CMC: Bioanalytical method development and validation. Scale up synthesis – feasible for lead compound based on current discussions

Currently Initiating

IND/CTA
miR-29 PromiRs are Positioned for Myriad Fibrotic Indications

- Fibrosis is a major component of multiple organ failure, with a major effect on patient morbidity and mortality
- No approved anti-fibrotic compounds have a major impact on these debilitating diseases
- Decreased miR-29 levels correlate with advanced fibrosis and miR-29 is a key nodal point regulating pro-fibrotic gene expression
- miRagen has developed stable miR-29 drug candidate compounds that modulate these pro-fibrotic genes
 - Allows for a systems biology approach vs single agent in development
- miRagen has shown miR-29 mimics demonstrate anti-fibrotic effects
 - Efficacy shown in human skin and in rodent models of corneal, lung, and liver fibrosis
Acknowledgements

miRagen:
- Paul Rubin
- Aimee Jackson
- Corrie Gallant-Behm
- Kevin Rigby
- Linda Pestano
- Oliver Dansereau
- Shubh Roy
- Ben Werner

Yale:
- Maurizio Chioccioli
- Naftali Kaminski

Grants:
- NIH CADET II
 - 5UH3HL123886
- Contact: RLM@miragen.com